Subunit Stoichiometry of a Heteromultimeric G protein-coupled Inward-rectifier K+ Channel
نویسندگان
چکیده
منابع مشابه
Subunit stoichiometry of a heteromultimeric G protein-coupled inward-rectifier K+ channel.
We investigated the stoichiometry of the heteromultimeric G protein-coupled inward-recitfier K+ channel (GIRK) formed from GIRK1 and GIRK4 subunits. Multimeric GIRK constructs with several concatenated channel subunits were expressed in Xenopus oocytes. Coexpression of various trimeric constructs with different monomers clearly showed that the functional channel has stoichiometry (GIRK1)2(GIRK4...
متن کاملIntrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel
The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents ...
متن کاملDifferential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development.
Parasympathetic slowing of the heart rate is predominantly mediated by acetylcholine-dependent activation of the G protein-gated potassium (K+) channel (IK,ACh). This channel is composed of 2 inward-rectifier K+ (Kir) channel subunits, Kir3.1 and Kir3.4, that display distinct functional properties. Here we show that subunit composition of IK,ACh changes during embryonic development. At early st...
متن کاملAnchoring proteins confer G protein sensitivity to an inward-rectifier K(+) channel through the GK domain.
Anchoring proteins cluster receptors and ion channels at postsynaptic membranes in the brain. They also act as scaffolds for intracellular signaling molecules including synGAP and NO synthase. Here we report a new function for intracellular anchoring proteins: the regulation of synaptic ion channel function. A neuronal G protein-gated inwardly rectifying K(+) channel, Kir3.2c, can not be activa...
متن کاملA Novel Inward Rectifier K+ Channel with Unique Pore Properties
We have cloned a novel K+-selective, inward rectifier channel that is widely expressed in brain but is especially abundant in the Purkinje cell layer of the cerebellum and pyramidal cells of the hippocampus. It is also present in a wide array of tissues, including kidney and intestine. The channel is only 38% identical to its closest relative, Kir1.3 (Kir1-ATP-regulated inward rectifier K+ [ROM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 1996
ISSN: 0021-9258
DOI: 10.1074/jbc.271.48.30524